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Necessary conditions are found for weighted mean convergence of Fourier series
in orthogonal polynomials corresponding to measures drx with support [ -1, 1] for
which rx' > 0 almost everywhere in [-1, 1]. Some additional properties of such
orthogonal polynomials are also proved. © 1986 Academic Press, Inc.

Let drx be a finite positive Borel measure on the real line such that
supp(drx) is an infinite set and let Pn(drx) denote the corresponding
orthonormal polynomials. For fE L~~ let Sn(drx,j) denote the nth partial
sum of the orthogonal Fourier expansion of fin {Pk( drx) }, that is,

Sn(drx,j) = k~O ckPk(drx), Ck = f/Pk(drx) drx.
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It is well known [18] that S,,(d':l.,f) --->fin L~, as n ---> IX for every IE L3, if
and only if the moment problem for d'Y. possesses a unique solution, and
the latter is certainly the case whenever supp(d'Y.) is bounded. The problem
of weighted mean convergence of S,,(da,f) to f in spaces different from L;I>
has not yet been resolved with the exception of some specific orthogonal
polynomial systems. For example, if d':l. and dfi are generalized Jacobi
measures, then Badkov [4, 5] gave necessary and sufficient conditions for
L~{i convergence of S,,(d'Y.,f) to f for every fE L~{i' Badkov's results
generalize carlier ones by Riesz [17], Pollard [14 16J, Wing [20], New
man and Rudin [13], Muckenhoupt [9], Askey [11, and Badkov [3l
Orthogonal Hermite and Laguerre series were investigated in Askey and
Wainger [2] and Muckenhoupt [10, II]. In [12] one of us found
necessary conditions for L;//i convergence of S,,(d'Y.J) when da belongs to
the Szego class [19], that is, when supp((h) = [ -I, I] and log ':I.'(cos (}) E

L 1[0, n]. In the particular case when dx and dfJ are generalized Jacohi
measures, these conditions turn out to be sufficient as well [4]. In our
recent papers [7, 8] we laid foundation to a theory of orhogonal
polynomials that extends Szeg()'s theory when log x'( cos 0) ELI [0. n] is
replaced by the weaker condition that a' > 0 a.e. in [-- 1, I]. Our results
enable us to prove the following generalization of Theorem 8.13 in [12.
p. 154].

THEOREM I. Let Y. he such that supp(dx) = [-1, 1] and :1.' > 0 almost
ererywhere in [- I, I]. Assume that p ami q satis(\' 0 < p ~ J~ and
1~ q ~ x. Let u and w he Borel-measurable functions such that neither of"
them ranishes almost everywhere in [- 1, t] and u is finite on a set with
positive Lehesgue measure. Write q' = q/(q - I ) and

v(x) = (':I.'(x) ,/1 - X 2 )'2,

Suppose that for aery function IE L,~, the inequality

(J'; IS,,(d'Y.,f)WI"d'Y.Y"~c(f IIJill"dY.y" (1 )

1/\,-I

holds for all integers n? 0 with a jinite constant C independent of n andf (if
f(x) = 0 and u(x) = x;, then f(x) u(x) = 0 is iO be takm in the integral on the
right-hand side). Then If E L~" u I E q"

(
,.1 )'"! 1»'/v''':1.' <Y..,

.' 1

and

(f I lUl'l 'I' ':I.,y 'I' <x. (3)
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Here and in what follows, for p = OCJ the expression (II gl P da) I/p means
the L'!kt. norm of g. It may be worth pointing out that if 0 < p < 00,

1< q < 00, and p ~ q then in every known case (2) and (3) are also suf
ficient conditions for (1) to be satisfied (see, e.g., [4]).

Remark. We might as well allow that C in (1) depend onf, but then, by
the Banach-Steinhaus theorem (cf., e.g., [6, Theorem 2.1.11 on p. 52]), it
could be replaced by a constant independent off

Theorem 1 easily follows from Theorem 2 below, but first we have to
prove a

LEMMA. Let supp(da)= [-1,1] and a'>O a.e. in [-1,1]. For a given
real c and a nonnegative integer n define the set Bc,n(da) by

Bc,n(da) = {x: p~(da, x) a'(x) J1- x 2 :> c},

Then for every c > 21n
lim IBcn(da)1 = 0,

n --> 00

where lEI denotes the Lebesgue measure of the set E.

Proof Write

Then

so that

Therefore, if D c.n(da) is defined by

Dc,n(da) = {x: Qn(x) a'(x)(l - x 2
) -1/2:> c}

(4)

(5)

then Bc,ncDc,n' It was shown in [8, formula (10.3) after Theorem 10.1]
that

lim fl IQn(X)()('(X)-~Jl=?1 dx=O.
n-+oo -1 n

Hence, for c > 21n

lim f (Qn(X) a'(x) -~ J1- x 2
) dx = 0

n -+ 00 Dc,n n
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holds, so that

lim (c-~) f Jl=? dx=O,
n..---.+ 00 n Dc,n

from which

317

lim IDc,nl =0
n~ 00

follows. Thus (5) must indeed hold.

(c> 21n)

THEOREM 2. Let supp(dex) = [ -1, 1], ex' > 0 almost everywhere in
[ -1, 1], and suppose 0 < p <00. Put

v(x) = (ex/(x) Jl=?)1/2.

If g is a Lebesgue-measurable function in [ -1, 1] then

In particular, if

then g = 0 a.e.

Proof First assume 0 < p <2. Define rnand h by

rn= v2p~(dex)

and

h=(lgl/vV,

respectively. Let

(

1 )llP
K = lim inf f IgPn(dex)iP .

n_ 00 1

If K = 00 then there is nothing to prove, so assume K < 00. Then

liminffl hr~/2=KP
n- co -1

(6)
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holds; therefore, if hM is defined by

hM(x) = min{h(x), M}

for M> 0, then

lim inf f1 hrPI2 ~ KP
n '"n---i> 00 ~1

(8)

is satisfied as well. Fix c > 21n. If c> 21n. If Bc,n is defined by (4) then (5) in
the Lemma holds, and thus Theorem 13.2 of [8] implies

Applying (11.4) in Theorem 11.1 of [8], we obtain

Consequently,

f
1 f1lim hMrn =- hM

n~oo [-l,l]\B"n n -1

holds as well. On the other hand,

is satisfied for x E [ -1, 1]\Bc,n, so that

(9)

(10)

(x E [ -1, 1]\Bc,n)

holds. Thus by (8) we have

and combining this inequality with (10) we obtain

r hM~nc1-pI2KP
-1

for every M> 0 and e> O. Letting M -+ 00 here and applying Legesgue's
Monotone Convergence Theorem, and then makin c -+ 21n, we can con
clude that

(

1 ) lipf-1 h ~ 211p - 112 ;;. K,
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and so the theorem follows for °< P :s:: 2. When 2 < p < x we can proceed
as follows (the arguments below closely parallel those given in the proof of
Theorem 7.32 in [12, pp. 138-139J). Keeping the previously established
notation, from Holder's inequality we obtain

,1 (,1 )(1'-- 2),p( .1 )2.'1'

"

h r=r hlp-2)/p(h21pr):5':: I h J h rp,2 .
M n M M n '" ,\1 \ M n

• -_. 1 • , • , I

Hence

2)1'

which together with (9) implies

(
" )11' ~
J ,h,H :S::v'rrK.

Letting M --+ cr:;, Lebesgue's Monotone Convergence Theorem entails

so that the theorem follows for 2 < P < x as well. Finally. assume p = 'x,
and let I < q < ,x. Clearly, we have

(

,1 )1'1 (,I \,."I ifl q
:s:: 2 1

.''1 css. sup IfI= 21
'1 JI . iI:" I •

'--I [-1.1] 'j

where the equation holds in view of the convention concerning the inter
pretation of the right-hand side for P = x. Therefore, inequality (6) with q
replacing P implies

((, Ig/Vlqyq :s::fi21/ql~~.i~f(r! IgPn(dXWY"

(p= x, 1<q<:::::).

Making q --+ x, inequality (6) follows for p = x as well. Thus the proof of
Theorem 2 is complete.

Proof of Theorem 1. For n = 0, inequality (l) implies
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for every IE L~". Since u is finite on a set of positive measure, we can find a
Borel set E and a positive number N such that drx(E) > 0 and u(x)::::; N for
x EE. If I is the characteristic function of this set E then (11) shows that
wEL~". If 1 <q::::;oo then we can apply (11) with/=(lul+e)-q', where
e> 0 and q' = ql(q -1); if we let e --+ 0, then u- 1 EL~" will follow by Fatou's
lemma. If q = 1, then we apply (11) with 1=In being the characteristic
function of the set where Iu -11 > lin; we obtain a contradiction unless
In=O a.e. for large enough n; thus, we can conclude that u-1EL'drx.
Thus we have u- 1 E L~~ for 1 ::::; q ::::; 00 (q is fixed), as claimed. Therefore
1=(fU)U-1EL~" also holds wheneverluEL~" (l::::;q::::;oo),

Moreover, it follows from (1) that

holds for n ): 1 and IE L~". Hence we have

for n): 1 and IE L~". Fix n and choose g such that

(12)

and (13)

i.e.,

(g(x) = 0 if u(x) = (0).

Put E= {XE [-1,1]: g(x);60}. Let EkcE be a Borel set and hk its
characteristic function such that hk(x) --+ 1 as k --+ 00 for x EE and
gu EL~,,(Ed, i.e., hkgu E L~,,[ -1, 1], for every k. Then hkg E L~,,[ -1, 1]
according to the last sentence of the preceding paragraph, i.e., (12) holds
with 1=Ik = hkg. Noting that we have

IkPn = I/k UIIPn u- 1
1 = I/kUl q= IPn u- 1

I
q
'

on E k according to (13), the equality

holds. Thus (12) with 1=Ik implies
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Making k -+ 00 and replacing E with [- 1, 1J in the second integral
(u- 1 = 0 outside E), we obtain

for all n ~ 1 (q' = qj(q - 1)). By (7) in Theorem 2 this implies that

and

and now inequalities (2) and (3) follow from Theorem 2.
For orthogonal polynomials on the unit circle, the analogue of

Theorem 2 can be derived without much difficulty from Theorem 2.1 of
[8], and therefore one can easily formulate and prove a result similar to
Theorem 1 for weighted mean boundedness of Fourier expansions in
orthogonal polynomials on the unit circle. We lave leave the details to the
reader.

We expect that Theorem 2 and the Lemma above will have further
applications. In fact, we believe that these two statements will play a
significant role in the extension of Szego's theory we initiated in [7,8]. An
example is given by the following

THEOREM 3. If supp(da) = [ -1, 1J and a' > 0 almost everywhere in
[-1, 1J then

00

L ICkPk(da, x)1
k~O

either diverges almost everywhere or converges almost everywhere in
[ -1, 1J, and in the latter case

holds as well.

Proof By Theorem 2 with P = 1, we have

liminfJ IPn(da)l~ ~f v-1>O
n~ 00 E V 2n E

(15)

(16)
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for every set E with positive Lebesgue measure. Now assuming that (14)
converges on a set Ee [-1,1], lEI >0, one can apply (16) and the usual
arguments used to prove the Denjoy-Lusin theorem on absolute con
vergence of trigonometric series [21, p. 232]. These give (15), from which
the convergence of (13) almost everywhere in [-1, 1] follows by
Lebesgue's Monotone Convergence Theorem.
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